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Abstract— This paper proposes a novel approach to aircraft
conflict resolution where the design of an optimal conflict
resolution manoeuvre based on the aircraft intent information is
robustified against the uncertainty affecting the aircraft future
positions by a randomized stochastic optimization method.
The goal is to account for a probabilistic description of the
uncertainty affecting the aircraft motion, while avoiding the
excessive computational load of a pure Monte Carlo stochastic
optimization method.

I. INTRODUCTION

In the airspace over Europe, air traffic control of en-route
flights is managed through 75 Air Traffic Control Centers
(ATCCs) partitioned into sectors, each controlled by a team
of two or three Air Traffic Controllers (ATCs). Sectors are
designed so that the nominal flow of traffic through each
sector can be safely handled by the ATCs in charge of that
sector. The ATCC capacity is limited by the sector with the
minimum capacity, and, hence, the capacity of the overall
Air Traffic Management (ATM) system is limited by the
workload levels that ATCs can sustain.
The growth in air traffic demand is pushing the ATM system
to its limit. As reported in [1], the average daily traffic above
Europe in 2006 grew by 4.1% with respect to the preceding
year, with a 4.6% increase of the total delay, much higher
than expected. Introducing tools to assist ATCs and reduce
their workload is therefore becoming crucial for adapting the
ATM system capacity to the increased demand, thus reducing
delays while, at the same time, guaranteeing safety in air
travel.
ATCs are responsible for maintaining the appropriate separa-
tion between aircraft and avoiding conflicts. A conflict is the
event where two aircraft get closer than a minimum safety
distance, which is defined according to specific separation
criteria. Aircraft separation criteria are intimately connected
with the expected air traffic density and the level of techno-
logical advancement of the ATM system. Currently, the en-
route separation criterion depends on the phase of the flight
and other factors and is specified in terms of a minimum
vertical distance (typically 1000 ft) and minimum horizontal
distance between aircraft at the same flight level (3 nmi near
airports and 5 nmi otherwise).
Several critical situations can occur in the management of
aircraft separation, during all phases of the flight. Various
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methods for automatic Conflict Detection and Resolution
(CDR) have been proposed in the literature (see [2] for a
comprehensive review) with the goal of enhancing the air-
craft separation management function in several conditions.
An essential element of a CDR method is the model adopted
for predicting the aircraft future positions during the look-
ahead time horizon. If a loss of separation is detected based
on the prediction model, an alarm is issued and a conflict
resolution manoeuvre is possibly suggested.
When the prediction time horizon is short (a few seconds to
1 minute), the nominal aircraft trajectory can be used. Over
larger time horizons (the so-called mid-term CDR) prediction
of future aircraft positions has to account for uncertainty, due
to measurement imprecision and noise, delayed information
updating, and errors in tracking the prescribed flight plan. To
this purpose, the worst-case approach to CDR detects a con-
flict if there exists at least a pair of trajectories that violates
the minimum separation in the set of all admissible aircraft
trajectories. The probabilistic approach represents a good
trade-off between the nominal and worst-case approaches,
since the likelihood of the different admissible trajectories
is considered when assessing the possibility that a conflict
occurs.
In this paper, conflict resolution is studied on a mid-term time
horizon of 20-30 minutes. The model adopted for predicting
the aircraft future positions is probabilistic. The objective is
to determine a resolution manoeuvre that maximizes a given
performance criterion related, e.g., to passenger comfort,
fuel consumption, etc., while guaranteeing a low probability
of conflict. This naturally leads to a constrained stochastic
optimization problem, difficult to solve analytically. Based
on the reformulation of the constrained optimization problem
as an unconstrained optimization problem with a penalized
performance function, a randomized algorithm is proposed
in [3] to determine a sub-optimal solution. In that algorithm
candidate resolution manoeuvres are extracted at random
according to a probability distribution that is proportional
to the penalized performance index to be maximized, so that
they concentrate close to optimal or nearly-optimal resolution
manoeuvres. In principle, this randomized solution allows to
use arbitrarily complex (and supposedly realistic) prediction
models, but, in practice, the resulting computational effort
hampers its applicability.
Starting from the analysis of the critical aspects of the
Monte Carlo Markov Chain (MCMC) implementation of the
randomized solution in [3], we propose here an algorithm
with significantly enhances performance. The key idea is to
combine the MCMC algorithm with a deterministic method



that computes the optimal conflict-free resolution manoeuvre
by relying on the nominal aircraft trajectories and neglecting
the probabilistic component affecting the prediction of the
aircraft future positions (see e.g. [4]-[8]). The resulting two-
step approach can be viewed as a methodology to robustify
the nominal design obtained via deterministic optimal con-
flict resolution against the uncertainty affecting the future
aircraft positions.
The paper is organized as follows. Section II illustrates the
Monte Carlo optimization approach to conflict resolution
introduced in [3]. Section III proposes the combination of
this approach with optimization techniques based on deter-
ministic models for the prediction of future aircraft position.
Finally, some concluding remarks are presented in Section
IV.

II. MONTE CARLO OPTIMIZATION FOR AIRCRAFT
CONFLICT RESOLUTION

Consider N aircraft flying in a certain airspace region during
a given look-ahead time horizon [0, tf ], where 0 represents
the current time instant and tf is of the order of 20-30
minutes.
According to the current centralized ATM system, each
aircraft is assigned a flight plan described by a sequence
of way-points, i.e., three-dimensional points with associated
arrival times. The aircraft should track the reference path
given by the sequence of line segments between subsequent
way-points, while trying to meet the scheduled arrival times.
Let the stochastic process ωi that describes the aircraft
future positions during the time horizon [0, tf ] be defined on
the probability space (Ω,F , P ), where the sample space Ω
represents the set of all possible N -tuple of trajectories. The
characteristics of process ωi are determined by the flight plan
of aircraft i, the aircraft dynamics, the actions of the flight
management system, and by the uncertainty that affects its
current state measurement and its motion. Considering two
aircraft, i and j, and letting ∆ωij = ωi − ωj , then, the
probability of a conflict during [0, tf ] can be expressed as:

Pc = P (∆ωij(t) ∈ C for some t ∈ [0, tf ] and (i, j), i 6= j) ,

where

C = {(c1, c2, c3) ∈ R3 :
√

c2
1 + c2

2 ≤ r, |c3| ≤ h} (1)

is a cylinder of radius r and height 2h centered at the origin
representing the conflict zone, r and h being the minimum
horizontal and vertical distances for aircraft separation.
The strategy adopted by the ATCs when a conflict is likely
to occur consists of redefining the flight plan of the aircraft
involved in the predicted conflict, either adding new way-
points or modifying the coordinates of the existing ones, so
as to minimize the probability of conflict occurrence, while
satisfying performance requirements (such as fuel saving, or
passenger comfort, etc.).
As explained next, this strategy can be translated in mathe-
matical terms as a constrained stochastic optimization prob-
lem.

Let u taking values in some compact set U ⊂ <p denote
the parameterization of the joint resolution manoeuvre in-
volving the N aircraft. u can represent, for instance, the
coordinates of additional intermediate way-points of the N
aircraft flight plans. Different values for u ∈ U result in
different likelihoods of the N aircraft trajectories. Thus, the
probability space (Ω,F , Pu) describing the future motion of
the N aircraft has a probability measure Pu that depends on
u ∈ U .
If we denote by ΩA ⊆ Ω the set of conflict-free N -tuples
of trajectories, the probability that a conflict occurs during
[0, tf ] is a function of u ∈ U which can be expressed as

Pc(u) =
∫

Ω\ΩA

Pu(dω). (2)

Let perf(u, ω) : U ×Ω → [0, 1] be a function that associates
to a joint resolution manoeuvre with parameter u ∈ U and an
N -tuple of trajectories ω ∈ ΩA a performance index related,
e.g., to fuel consumption and passenger comfort. If ω /∈ ΩA,
then perf((u, ω) = 0 for any u ∈ U since the N -tuple ω of
trajectories is not conflict-free. The expected performance of
the joint resolution manoeuvre with parameter u ∈ U is then
given by

PERF(u) = Eu[perf((u, ω)] =
∫

Ω

perf((u, ω)Pu(dω).

The problem of choosing an appropriate joint resolution
manoeuvre can then be reformulated as that of choosing
u ∈ U so as to maximize the expected performance, while
guaranteeing that the probability of conflict does not exceed
a given threshold P̄ :

sup
u∈U

PERF(u) subject to Pc(u) ≤ P̄ . (3)

This constrained optimization problem can be reformulated
as an unconstrained one by introducing a suitable term in
the performance index so as to favor those values of u ∈ U
that make conflict-free N -tuples of trajectories more likely
to occur. More precisely, let

v(u, ω) =

{
perf(u, ω) + Λ, ω ∈ ΩA

1, ω /∈ ΩA

(4)

where Λ is a reward for the satisfaction of the constraint. Λ
is always greater than 1, so that if ω ∈ ΩA, then v(u, ω) > 1,
∀u ∈ U . For a given u ∈ U , let

V (u) = Eu[v(u, ω)] =
∫

Ω

v(u, ω)dPu(ω). (5)

be the expected value of v(u, ω) with ω distributed according
to Pu.
The following proposition characterizes the performance
achievable by solving the unconstrained problem

sup
u∈U

V (u) (6)

in place of the original constrained problem (3).



Proposition 1 ([3]): Assume that the supremum in (6) is
attained and let u? = arg supu∈U V (u). Then,

Pc(u?) ≤ 1
Λ

+
(
1− 1

Λ
)
Pmin

PERF(u?) ≥ PERFmax − (Λ− 1)(P̄ − Pmin) (7)

where Pmin = infu∈U Pc(u) and PERFmax =
supu∈{u∈U : Pc(u)≤P̄} PERF(u). ¤
Proposition 1 can be used to select Λ so as to ensure that
u? satisfies Pc(u?) ≤ P̄ . In fact, if ũ ∈ U is such that
Pc(ũ) ≤ P̄ , then Λ has to satisfy Λ ≥ 1−Pc(ũ)

P̄−Pc(ũ)
in order

to obtain Pc(u?) ≤ P̄ . If, in addition, Pmin = 0, then
Λ ≥ 1

P̄
ensures that Pc(u?) ≤ P̄ . Since PERF(u?) worsens

with increasing Λ (see equation (7)), the selection of Λ that
reduces the solution sub-optimality is Λ = 1−Pc(ũ)

P̄−Pc(ũ)
and

Λ = 1
P̄

, respectively.
The problem of determining u? = arg supu∈U V (u) is not
easy to solve, since it involves determining the expected
value of the performance v(u, ω) and minimizing it with
respect to u. In general, the expected value of v(u, ω) cannot
be computed analytically given that Pu is defined indirectly
as the probability measure on the N -tuples of trajectories in-
duced by the prediction model of the aircraft future positions.
Also, even if an analytic expression for V (u) were available,
it would be generally difficult to determine its maximum.
The proof of Proposition 1 in [3] requires that function
perf(u, ω) satisfies 0 ≤ perf(u, ω) ≤ 1, ∀(u, ω) ∈ U × ΩA.
Such condition can be disadvantageous with respect to the
optimization of V (u), since Λ > 1 is added to perf(u, ω) in
the definition of v(u, ω) (see (4)). A large Λ > 1 yields a
nearly flat function v(u, ω) over ΩA, which makes it difficult
to identify the parameter u? with the best performance
among those u ∈ U that cause most of the N -tuples to
be conflict-free. This undesired effect of a large Λ can be
counteracted by replacing the performance function V (·)
with V M (·), where M is an integer greater than 1: the larger
is M , the more peaked is V M (·).

A. MCMC solution to the unconstrained optimization

Inspired by the randomized approach to stochastic optimiza-
tion proposed in [9], [10], [11], the problem of maximizing
V M (·) is addressed in [3] by introducing a fictitious random
variable u taking values in U ⊂ <p and with probability
density ft(·) proportional to V M (·) (ft(·) ∝ V M (·)). In this
way, the extractions of u will concentrate close to the mode
of ft(·), and, hence, to the maximum of V M (·).
Let us introduce the set of random variables
(u, ω(1), ω(2), . . . , ω(M)) on the extended probability
space (Ωe,Fe, Pe) where Pe is such that
Pe

(
u, ω(1), ω(2), . . . , ω(M)) ∈ Au × Aω

) ∝∫
Au

( ∫
Aω

∏M
i=1 v(u, ω(i))Pu(dω(i))

)
du. Then, u has a

probability density

ft(·) ∝
∫

ΩM

M∏

i=1

v(·, ω(i))Pu(dω(i)) = V M (·).

The Metropolis-Hastings (MH) algorithm, [12], [13], can be
used to extract values for the introduced set of random vari-
ables (u, ω(1), ω(2), . . . , ω(M)). It is in fact easier to extract
joint values for (u,ω(1),ω(2), . . . , ω(M)) than directly for u
only, since this would involve computing the expectation in
(5).
The MH algorithm belongs to the so-called Monte Carlo
Markov Chain (MCMC) algorithms, whose objective is the
extraction of samples from a “target distribution”, con-
structed as the limit distribution of an ergodic Markov chain.
The implementation of the MH algorithm for aircraft conflict
resolution requires a “instrumental density” fp(·) for extract-
ing values from U and a prediction model for generating N
aircraft trajectories for a given value u of the joint resolution
manoeuvre parameter. In principle, it is applicable to any
stochastic model for aircraft trajectory prediction, provided
that it is possible to simulate it.

MCMC Algorithm for conflict resolution ([3])
Initialization:

extract u0 according to fp(·)
generate M N -tuples of trajectories ω

(1)
0 , ω

(2)
0 , . . . , ω

(M)
0

when the resolution manoeuvre parameter is u0

compute the performance index v0 =
∏M

i=1 v(u0, ω
(i)
0 )

k-th iteration:

extract ũ according to fp(·)
generate M N -tuples of trajectories ω̃(1), ω̃(2), . . . , ω̃(M)

when the resolution manoeuvre parameter is ũ

compute the performance index ṽ =
∏M

i=1 v(ũ, ω̃(i))

define ak = min
{

ṽ
fp(ũ)

fp(uk−1)
vk−1

, 1
}

set (uk, vk) =

{
(ũ, ṽ) with probability ak

(uk−1, vk−1) with probability 1− ak

According to this algorithm, one selects uk by extracting a
value ũ from U according to the instrumental density fp(·).
The performance of the extracted ũ is tested on M N-tuple
of aircraft trajectories: the better is the performance ṽ of
ũ with respect to that of the previously selected uk−1, the
more likely is that ũ would represent an extraction from
the Markov chain with limiting density for u proportional
to V (·). Since a non-uniform fp(·) favors the extraction of
certain ũ with respect to others, the relative likelihood of
ũ and uk−1 is considered when deciding if accepting ũ or
setting uk = uk−1.
Under the assumption that the support of the instrumental
density fp(·) contains that of the target density ft(·), the
state uk generated by the algorithm is distributed according
to the desired density ft(·), in the limit. In practice, one has
to define a burn-in period required for the Markov chain to
reach the limit behavior. The samples uk obtained after the
burn-in period will be extracted approximately from ft(·).
Some criteria to evaluate when convergence is reached have
been proposed in the literature (see e.g. [13]), but this is still



subject of ongoing research.

B. Analysis of the critical aspects of the MCMC solution

Even when using a low value for M , the algorithm is capable
of clearly separating U into a region of conflict-free flight
plans and a region of high conflict probability. However, in
order to discern the regions associated to high performance, a
high M is necessary, to force ft(·) to concentrate around the
global optimum (see [14], [15] for a quantitative discussion).
Unfortunately, the computational load of the algorithm also
increases with M . The obvious reason for this is that M
simulations need to be performed at each iteration of the
algorithm. Somewhat more subtly, the rate of convergence
of the Markov chain to the limit behavior (and hence the
length of the burn-in period) also depends on M .
To demonstrate this, let πk denote the probability distribution
of the uk generated by the algorithm and πt the target
probability distribution (corresponding to the density ft(·)).
Standard results in the theory of Markov chains allow one
to quantify the rate of convergence of πk to πt, under some
conditions. The following was shown in [16].
Theorem 1: Assume that there exists B > 1 such that for
all u ∈ U , ft(u) > 0, fp(u) > 0, and ft(u) ≤ Bfp(u). Then

‖πt − πk‖TV ≤
(

1− 1
B

)k

.

Here ‖ · ‖TV denotes the total variation norm. We see that
the distribution of uk converges to the target distribution
geometrically. If we select σ ∈ (0, 1) we can then define
the burn-in period as the number of steps required to get
within σ of the target distribution in the total variation norm.
Taking logarithms we see that in this case it suffices to select
a burn-in period

k ≥ log 1
σ

log B
B−1

.

The conditions of Theorem 1 are easy to satisfy in our case.
If, for example, the space U is compact we can simply take
fp(·) to be the uniform distribution with density

fp(u) =
1

λ(U)
> 0

where λ(U) denotes the Lebesgue measure of the set U .
Moreover, notice that, by construction

V (u) =
∫

Ω

v(u, ω)dPu(ω) ≥
∫

Ω

dPu(ω) = 1

and

ft(u) =
V (u)M

∫
Ω

V (u)Mλ(du)
≤ (1 + Λ)M

λ(U)

leading to B = (1 + Λ)M . Noting that

log
(

(1 + Λ)M

(1 + Λ)M − 1

)
≥ 1

(1 + Λ)M

we see that it suffices to take a burn-in period

k ≥ (1 + Λ)M log
1
σ

.

Note that the length of the burn-in period is exponential in
M . Therefore, if we would like to improve the accuracy
of the solution by increasing M we would not only suffer a
(linear) increase in the number of extractions needed by each
step of the algorithm, but also have to wait (exponentially)
longer.
To counteract this effect a better instrumental distribution is
needed. Several alternatives present themselves.

1) Make the new extractions depend on the current state.
It turns out that in this case it is much harder to bound
the rate of convergence [16]. We will not pursued this
alternative further here.

2) Develop an annealing schedule for M . Roughly speak-
ing, one can fix a low value of M and run the chain
longer than the burn-in period. One can then use the
tail of the uk sequence to generate a new instrumental
distribution, e.g. a mixture of Gaussian, possibly after
clustering the samples. M can then be increased and
the process repeated. Such an approach was explored
numerically in [3].

3) Bias the instrumental distribution toward regions of
U that are known to contain good solutions. Such
regions can be estimated by solving a deterministic
optimization problem first, then biasing the randomized
search toward its solutions. This will be the approach
pursued in the present paper.

The hope with the third approach is that the deterministic
optima will be in the vicinity of the stochastic optima u∗.
Therefore, biasing fp(·) toward the deterministic optima is
likely to make fp(u∗) larger, decreasing the value of B
needed to ensure that ft(u∗) ≤ Bfp(u∗) (recall that ft(·)
reaches its maximum at u∗) and speeding up convergence.
The danger of course is that if the deterministic optimum
happens to be far from the stochastic one, then biasing
fp(·) in this way would imply a larger value of B making
convergence slow, possibly slower than with the uniform
instrumental distribution.

III. A TWO-STEP SOLUTION TO OPTIMAL CONFLICT
RESOLUTION

The idea proposed in this paper is as simple as follows:
to increase the convergence speed to the optimal solution,
start the algorithm with an instrumental probability density
as close as possible to the target one. The instrumental
density is built based on the manoeuvre computed by a
deterministic method for conflict resolution that neglects the
uncertainty affecting the prediction of the aircraft future
positions and relies on the nominal aircraft trajectories. In
this way, the value for M used in the MCMC algorithm
implementation does not need to be much high since the
samples extracted from the instrumental density should be
already close to the maximum of V (u). The application of
the MCMC algorithm to the instrumental density obtained by
the deterministic resolution method can be reinterpreted as a
way to robustify the nominal design against the uncertainty
affecting the aircraft future positions.



We next illustrate this idea with reference to a specific
conflict resolution problem, and verify its efficacy on a
simple numerical example.
A deterministic solution to the conflict resolution problem
which optimizes fuel consumption and passenger comfort
based on the nominal aircraft trajectories is presented first.
The nominal design is then robustified against uncertainty on
the future aircraft behavior by MCMC optimization.
Suppose that aircraft i is following a flight plan that consists
of a starting position ai ∈ R3 at time 0 and a destination bi ∈
R3 at time tf . With reference to the time horizon [0, tf ], a
trajectory for the ith aircraft can be expressed as a continuous
and piecewise differentiable function ωi : [0, tf ] → R3, such
that ωi(0) = ai and ωi(tf ) = bi. The “energy” of ωi is
defined as:

J(ωi) =
1
2

∫ tf

0

‖ω̇i(t)‖2 dt, (8)

where ‖ω̇i‖ represents the aircraft velocity.
Trajectory ωi can be interpreted as a curve in R3 parameter-
ized in t ∈ [0, tf ], whose length is given by:

L(ωi) =
∫ tf

0

‖ω̇i(t)‖ dt.

By the Cauchy-Schwarz inequality, we have that J(ωi) ≥
1
2

L(ωi)
2

tf
. The equality holds if and only if the velocity ‖ω̇i‖

is constant and, in that case, J(ωi) is proportional to ‖ω̇i‖2.
As expected, we can conclude that the energy J(ωi) is
minimal if and only if trajectory ωi is the smooth constant-
speed motion along the line segment from ai to bi, which
has a practical impact on fuel consumption and passenger
comfort.
Let us now consider N aircraft flying from the initial
positions a = (a1, a2, . . . , aN ) to the final positions b =
(b1, b2, . . . , bN ) in the time horizon [0, tf ]. The joint trajec-
tory of the N aircraft is represented by ω = (ω1, ω2, . . . , ωN )
and is conflict-free only if no aircraft enters the cylindrical
protection zone C defined in (1) surrounding any other
aircraft during the time horizon [0, tf ]. We shall denote the
set of conflict-free N -tuples of trajectories starting at a and
ending at b as ΩA(a, b)
Suppose that a conflict would occur if all the N air-
craft follow the minimal energy trajectory. To solve this
conflict situation, an intermediate way-point is introduced
at time tc ∈ (0, tf ) with spatial coordinates ui ∈ R3,
i = 1, 2, . . . , N , with the understanding that the resulting
trajectories are composed of two straight line segments, each
one covered at constant speed, that is:

ωi(t) =

{
ai + (ui − ai) t

tc
, 0 ≤ t < tc

bi + (ui − bi)
t−tf

tc−tf
, tc ≤ t ≤ tf

(9)

The parameter vector u = (u1, u2, . . . , un) has to be
appropriately chosen so as to avoid the occurrence of a
conflict while not deviating too much from the minimal
energy solution.

According to the approach proposed in [8], [17] to opti-
mal (deterministic) conflict resolution, we introduce the “µ-
energy” function

Jµ(ω) =
N∑

i=1

µiJ(ωi),

where µi are positive real numbers adding up to one that
represent the priorities of the different aircraft. Based on the
parameterization of ωi in (9), Jµ(ω) can be written explicitly
as a function of u:

Jµ(ω) =
1
2

tf
(tf − tc)tc

N∑

i=1

µi ‖ui − uc
i‖2 + k, (10)

where k is a constant, and

uc
i =

(tf − tc)ai + tcbi

tf

are the optimal way-points in the absence of the conflict
avoidance constraint.
Optimal conflict resolution in this deterministic setting is
then formulated as the following constrained optimization
problem:

min
u∈U

Jµ(ω) subject to ω ∈ ΩA(a, b). (11)

where Jµ(ω) is a quadratic (and hence convex) function
of u (see equation (10)). The constraint ω ∈ ΩA(a, b) can
also be expressed in terms of u based on (9). The resulting
constraints are non-convex but they can be approximated so
as to transform (11) into a convex optimization problem, [8].
Let ū? be the (approximate) solution to the constraint
optimization problem (11). The designed joint resolution
manoeuvre with parameter ū? is robustified against the un-
certainty affecting the aircraft future positions by considering
a stochastic prediction model and applying the MCMC algo-
rithm with a Gaussian density with mean ū? as instrumental
density fp(·).
A. Numerical example

Consider two aircraft flying at the same altitude during the
time horizon [0, tf ] with tf = 20 minutes. The flight plan
of aircraft 1 consists of two way-points: a1 = (0, 120) at
time 0 and b1 = (240, 120) at time tf , with the two spatial
coordinates identifying the position on the horizontal plane
at a fixed altitude measured in kilometers. As for the flight
plan of aircraft 2, it is given by a2 = (120, 0) at time 0 and
b2 = (120, 240) at time tf .
Clearly, if the two aircraft were to follow the assigned flight
plans exactly, a collision would occur (see Figure 1). To
avoid that the aircraft get closer than 5 nmi, the flight plans
have to be modified by introducing intermediate way-points.
We assume, for simplicity, that only the flight plan of aircraft
2 is modified by introducing an intermediate way-point u =
(ux, uy) at time tc = tf/2 = 10, at the fix altitude. The
spatial coordinates of the introduced way-point should be
selected so as to minimize the deviation for the straight line
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Fig. 1. Flight plan of two aircraft flying at the same altitude. Origin and
destination are indicated with ∗ and ¦, respectively.

path traveled at constant velocity, thus avoiding excessive
fuel consumption and discomfort for passengers.
The performance of the resolution manoeuvre with parameter
u over the set of conflict-free joint trajectories ΩA is set equal
to

perf(u, ω) = e−
‖u−(120,120)‖

100 , ω ∈ ΩA

to penalize deviations from the straight trajectory as well as
velocity modifications.
As a result the penalized performance takes the form

v(u, ω) =

{
e−

‖u−(120,120)‖
100 + Λ, ω ∈ ΩA

1, ω /∈ ΩA.

We set the threshold conflict probability P̄ = 0.1, which
corresponds to Λ = 10 (it is easy to see that effectively
conflict free plans exist, hence Pmin ≈ 0).
Note that we need only to be able to to detect if the
aircraft get in conflict (ω 6∈ ΩA) or not (ω ∈ ΩA) when
simulating the two aircraft trajectories in the MH algorithm
implementation. We can then reduce the effort by simulating
directly the relative trajectory ∆ω = ω1 − ω2 of the two
aircraft instead of the trajectories of the two aircraft.
In this numerical example, we adopted a simple stochastic
prediction model taken from [18], where the aircraft relative
position is governed by the stochastic differential equation

d∆ω(t) = ∆v(t)dt + ρ
√

2[1− r(∆ω)]dB(t) (12)

with B representing a standard 2D Brownian motion. As
for the other quantities in (12), ∆v(t) = v1(t)− v2(t) is the
aircraft relative velocity, ρ > 0 modulates the variance of the
standard Brownian motion, and r(x) = e−c‖x‖, c > 0, is an
exponentially decaying spatial correlation term accounting
for wind as the main source of uncertainty on the aircraft
future position (see [18] for more details). In the simulations
we set the spatial correlation coefficient c = 0.5 and the
variance parameter ρ = 50. The values for u = (ux, uy) ex-
tracted with the Monte Carlo optimization method proposed
in [3] are reported in Figure 2. Two runs of the MH algorithm
are executed: in the first run we set M = 10, whereas in
the second run M = 100. Clearly, to avoid the conflict,
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Fig. 2. Values of u = (ux, uy) extracted with the 2-steps Monte Carlo
optimization method.
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Fig. 3. Optimal resolution manoeuvre calculated with the 2-steps Monte
Carlo optimization method.

aircraft 2 must either initially slow down and deviate to the
left (way-point in the lower left region) or, symmetrically,
accelerate and deviate to the right (way-point in the upper
right region). The indetermination due to the symmetrical
nature of the problem is naturally solved by the randomized
algorithm. The optimal value u? of the resolution manoeuvre
parameter is estimated as the mode of the sampled density
function constructed based on the extractions after the burn-
in period. The so-obtained estimate û? = (109.3, 108.3)
corresponds to the resolution manoeuvre depicted in Figure
3. û? guarantees a performance perf(û∗, ω) = 0.853 over
the conflict-free joint trajectories ω ∈ ΩA. Also, the fraction
of joint trajectories that are conflict-free when adopting the
resolution manoeuvre with parameter û? is larger than that
required by the constraint Pc(û?) ≤ P̄ = 0.1. The conflict
probability estimated with accuracy 0.01 and confidence 0.95
by the standard Monte Carlo method is in fact P̂c(û∗) =
0.59 · 10−3, so that the fraction of conflict-free trajectories
is larger than 98% with probability 0.95.
In the proposed approach to improve the Monte Carlo opti-
mization method, we first compute the optimal deterministic
resolution manoeuvre by solving (11) with µ2 = 10−6

and µ1 = 1 − µ2, so that aircraft 2 takes the responsi-
bility for avoiding conflicts. The so-obtained value ū? =
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Fig. 4. Values of u = (ux, uy) extracted with the proposed method.
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Fig. 5. Optimal resolution manoeuvre calculated with the proposed method.

(113.4, 113.4) is used for setting the instrumental density in
the MH algorithm with M = 20. The so-obtained parameter
û? = (111.1, 112.1) corresponds to perf(û?, ω) = 0.888,
ω ∈ ΩA, and P̂c(û?) = 0.70·10−3. Figures 4 and 5 represent
the values extracted for u and the resolution manoeuvre
corresponding to û?, respectively.
The computed û? differs from ū? obtained with the determin-
istic method only, due to the uncertainty effecting the actual
trajectories of the two aircraft. With respect to the 2-step
Monte Carlo optimization method, a significant reduction
of the number of necessary simulations is achieved, since
simulations are no longer needed to tune the instrumental
density, and a comparably lower M (M = 20 instead of
100) can be employed in the second phase. Notice that, if
one were to use a one-step Monte Carlo optimization with
uniform initial density and M = 20, a scattered distribution
would result as shown in Figure 6, with no evidence of the
optimal u.

IV. CONCLUSIONS

The Monte Carlo optimization approach to conflict resolution
proposed in [3] allows to use accurate and complex stochastic
models for the prediction of future aircraft positions. The
downside of this approach is its high computational load,
mainly related to the huge number of simulations needed
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Fig. 6. Values of u = (ux, uy) extracted with a 1-step Monte Carlo
optimization.

to achieve sufficiently low conflict probability and optimal
performance. In this paper, we pointed out that the com-
putational load can be significantly reduced if the Monte
Carlo approach is combined with a deterministic approach to
conflict resolution that disregards the prediction uncertainty
when computing the optimal resolution manoeuvre.
From a different perspective, the combined approach to
conflict resolution can be viewed as a way to robustify
against uncertainty the design of resolution manoeuvre based
on the future nominal aircraft positions.
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